METALLOGENY AND MINERAL DEPOSITS
OF THE NELSON-ROSSLAND MAP AREA:
Part II: The Early Jurassic Rossland Group
Southeastern British Columbia

By Trygve Höy, P.Eng. And Kathryn P.E. Dunne, P.Geo.
METALLOGENY AND MINERAL DEPOSITS
OF THE NELSON-ROSSLAND MAP-AREA;

PART II: THE EARLY JURASSIC
ROSSLAND GROUP
SOUTHEASTERN BRITISH COLUMBIA

With Contributions From:
J. Gabites, The University of British Columbia
C.I. Godwin, Consultant, Vancouver, B.C.
C.H.P. Leitch, Consultant, Saltspring Island, B.C.
J. Mortenson, The University of British Columbia
H.J. Stein, Colorado State University

BULLETIN 109
National Library of Canada Cataloguing in Publication Data
Hoy, Trygve, 1945-
Metallogeny and mineral deposits of the Nelson-Rossland map-area. Part II, The early Jurassic Rossland group, southeastern British Columbia

(Bulletin ; 109)

Issued by Energy and Minerals Division.
Includes bibliographical references: p.

QE187.H69 2001 553.4’1’’0971162 C2001-960247-2
The Nelson-Rossland map area (NTS 082F/SW) contains a variety of mineral deposits and numerous past producers. Many historical mining camps in southern British Columbia are located in the region, and their development led directly to the settlement and growth of the interior of the province.

The area straddles the tectonic boundary between rocks of North America and the eastern edge of arc terranes. It has a complex tectonic and magmatic history which is reflected in the diversity of mineral deposits and occurrences. The eastern part of the area is within the Kootenay arc, a north-trending arcuate structural zone in the eastern part of the Omineca belt that is characterized by intense polyphase deformation and locally high-grade regional metamorphism. The arc developed mainly in Late Proterozoic and Paleozoic rocks of the Kootenay terrane and in miogeoclinal North American rocks. It contains lead-zinc carbonate-hosted deposits, most of which are concentrated in the southern part of the arc south and southwest of Salmo. The Sheep Creek gold camp, within mainly EoCambrian quartzites of the Hamill Group, has produced more than 23 035 kilograms of gold from gold-quartz veins.

Mesozoic volcanic arc rocks of Quesnellia, west of the Kootenay arc, contain important silver-lead-zinc mineral camps, such as the Ymir camp within mainly metasedimentary rocks, and gold-copper-molybdenum deposits in intrusive, mafic volcanic and metasedimentary rocks of the Rossland Group.

Porphry copper-gold deposits in the Nelson-Rossland area include Katie, Shaft and occurrences adjacent to the Eagle Creek plutonic complex, all associated with mafic stocks within Early Jurassic Elise volcanic rocks. They are typical of the alkalic porphyry gold-copper class of deposits, with magnetite mineralization associated with potassic feldspar alteration and widespread regional propylitic alteration. Porphry molybdenite deposits and related breccias are concentrated on Red Mountain west of the Rossland gold-copper vein camp and on Stewart Mountain west of Ymir. The Gold Mountain zone of Kena Gold is a new porphyry gold prospect within the Middle Jurassic, syntectonic Silver King porphyry.

A variety of skarn deposit-types are recognized within the Nelson-Rossland map-area. Copper, lead-zinc, iron and gold skarns are associated with Middle Jurassic intrusions, whereas tungsten skarns occur mainly in Early Cambrian marbles along the margins of Cretaceous intrusions. Many of these skarns are past producers, most notably the gold skarns at Second Relief and Bunker Hill, the tungsten skarns such as the Emerald Tungsten and Dodger northeast of Salmo, and the molybdenite skarns, including Coxeay and Giant on Red Mountain in the Rossland camp.

Polymetallic Ag-Pb-Zn-Au veins are the most common deposit type in the Nelson-Rossland map-area. Many of the veins of the Ymir camp, those within Elise Formation rocks southwest of Nelson, and a number in the South belt of the Rossland camp are past producers. These veins are commonly along the margins of Middle Jurassic granitic stocks or batholiths.

The Rossland mining camp, the main focus of this paper, is the second largest lode gold producing camp in British Columbia, with recovery or more than 84 000 kilograms of gold and 105 000 kilograms of silver between 1894 and 1941. Vein deposits are in three main belts within or along the margins of the Middle Jurassic Rossland pluton. The North belt and Main veins are dominantly massive, intrusion-related gold-copper pyrrhotite veins, whereas those in the South Belt are dominantly polymetallic silver-lead-zinc veins. Pronounced mineral, textural and chemical zoning of these veins reflect their proximity to the Rossland pluton and to structural levels of emplacement. Due to western tilting of the area in Eocene time, eastern exposures of the Rossland veins were formed at deeper structural levels than those in the west.

Molybdenite mineralization within the camp occurs within an intrusive breccia-skarn complex on the western slopes of Red Mountain, west of and at higher structural levels than the Rossland gold-copper veins.

The relationships between various deposit-types in the Rossland camp are now well constrained. The copper-gold veins are spatially and genetically related to the ca. 167 Ma Rossland monzonite and associated diorite porphyry dikes. These dikes are overprinted by skarn alteration and molybdenite mineralization, dated by Re-Os at ca. 163 Ma. Brecciated quartz dioresite dikes, spatially associated with the molybdenite mineralization, are dated at ca. 163 Ma, supporting a younger age for molybdenite mineralization. These dikes may be late phases of the similar ca. 166 Ma Rainy Day pluton located just south of the molybdenite breccia complex.

Although Rossland veins have many characteristics of intrusion-related hydrothermal veins, their strong preferred alignment and associated shearing indicate structural control as well. Their orientation, age, and timing, relative to compressive deformation and documented synkinematic plutons elsewhere in the Rossland-Nelson area, support a model for development in an east-west compressive stress regime. This is manifest in the Rossland area by east-verging thrust faults that emplace oceanic ultramafic assemblages and the Permo-Carboniferous Mount Roberts Formation onto the Rossland Group.
TABLE OF CONTENTS

CHAPTER 1
INTRODUCTION .. 1
Introduction .. 1
Previous Work 1
Acknowledgments 1

CHAPTER 2
REGIONAL GEOLOGY 3
Introduction .. 3
Regional Geology 3
Rossland Group 3
Archibald Formation 3
Elise Formation 3
Hall Formation 7
Plutonic Rocks 8
Early Jurassic Plutons 8
Early-Middle Jurassic Plutons 8
Middle Jurassic Plutons 9
Cretaceous Plutons 9
Cenozoic Plutons 9
Structure and Tectonics 9
Early Jurassic 9
Middle Jurassic 10
Tertiary ... 10

CHAPTER 3
MINERAL DEPOSITS 11
Introduction .. 11
Carbonate-Hosted Deposits 11
Volcanogenic Massive Sulphide Deposits 12
Porphyry Copper-Gold: Alkalic 13
Introduction .. 13
Katie .. 13
Shaft ... 19
Kena Gold .. 23
Great Western 23
Toughnut ... 25
Alman and Star 27
Porphyry Mo .. 28
Stewart 2, Bobbi and Fresno 28
Skarn Deposits 29
Gold Skarns ... 29
Second Relief, Inez and Rand 31
Gold-Quartz Veins 33
Introduction .. 33
Sheep Creek Camp 34

Other Au-Quartz Vein Deposits 36
Polymetallic Veins: Ag-Pb-Zn±Au 36
Introduction .. 36
Ymir Camp .. 37
Silver King ... 38
Clubine ... 40
Other Deposits 43
Velvet ... 43
Red Point ... 48

CHAPTER 4
ROSSLAND AREA 49
Introduction .. 49
Geological Setting 49
Unit Cs ... 49
Mount Roberts Formation 51
Rossland Group 51
Sophie Mountain Formation 54
Marron Formation 54
Intrusive Rocks 54
Early? Jurassic Monzogabbro Intrusions 54
Rossland Monzonite 55
Diorite Porphyry Dikes 56
Rainy Day Pluton 56
Red Mountain Quartz Diorite Dikes 56
Ultramafic Rocks 56
Mineralization 57
Structure and Tectonics 58
Early Jurassic 58
Middle Jurassic 58
Eocene .. 59
Mineral Deposits 59
Red Mountain Mo Deposits 60
Introduction .. 60
Host Rocks .. 61
Molybdenite Breccia Complex 62
Mineralization 62
Re-Os Dating 64
Summary ... 64
Discussion .. 65
Regional Implications 65
Rossland Copper-Gold Veins 65
Introduction .. 65
North Belt .. 66
Evening Star 66
Monte Cristo .. 70
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cliff</td>
<td>70</td>
</tr>
<tr>
<td>Consolidated St. Elmo</td>
<td>71</td>
</tr>
<tr>
<td>St. Elmo</td>
<td>71</td>
</tr>
<tr>
<td>Mountain View</td>
<td>71</td>
</tr>
<tr>
<td>Jumbo</td>
<td>72</td>
</tr>
<tr>
<td>Discussion: North Belt</td>
<td>73</td>
</tr>
<tr>
<td>Main Veins</td>
<td>73</td>
</tr>
<tr>
<td>Centre Star - Le Roi</td>
<td>74</td>
</tr>
<tr>
<td>War Eagle-No. 1</td>
<td>74</td>
</tr>
<tr>
<td>Columbia-Kootenay</td>
<td>76</td>
</tr>
<tr>
<td>Other Main Vein Deposits</td>
<td>76</td>
</tr>
<tr>
<td>Discussion: Main Vein Deposits</td>
<td>76</td>
</tr>
<tr>
<td>South Belt</td>
<td>76</td>
</tr>
<tr>
<td>Homestake and Gopher</td>
<td>79</td>
</tr>
<tr>
<td>Bluebird and Mayflower</td>
<td>79</td>
</tr>
<tr>
<td>Robert E. Lee and North</td>
<td>80</td>
</tr>
<tr>
<td>Other South Belt Vein Occurrences</td>
<td>81</td>
</tr>
<tr>
<td>Discussion: South Belt Veins</td>
<td>81</td>
</tr>
<tr>
<td>Gold-Quartz Veins</td>
<td>81</td>
</tr>
<tr>
<td>Discussion</td>
<td>82</td>
</tr>
<tr>
<td>Discussion: Rossland Au-Cu Camp</td>
<td>82</td>
</tr>
<tr>
<td>Age Relations</td>
<td>82</td>
</tr>
<tr>
<td>Magmatic Controls</td>
<td>83</td>
</tr>
<tr>
<td>Mineralization, Geochemistry and Camp Zonation</td>
<td>83</td>
</tr>
<tr>
<td>Fluid Chemistry, Evolution and History</td>
<td>83</td>
</tr>
<tr>
<td>Structural Controls and Tectonic Setting</td>
<td>86</td>
</tr>
<tr>
<td>Model Summary</td>
<td>86</td>
</tr>
<tr>
<td>Summary: Rossland Camp</td>
<td>87</td>
</tr>
</tbody>
</table>

SELECTED BIBLIOGRAPHY

APPENDICES

1. Mineral occurrences of the Rossland-Trail map area 99
2. Sample Locations and Descriptions .. 109
3. Production Data: Metallic Deposits of the Rossland-Nelson Map Area . 111
4. U-Pb Data ... 115
5. Petrographic Report on Thin and Polished Thin Sections from Rossland Camp, B.C. ... 121
6(a) Analyses of Samples from Deposits in the Rossland Camp (by ICP) ... 135
6(b) Analyses of Samples from Deposits in the Rossland Camp (by INA) 139
7. Re-Os Dating of Molybdenite, Cokey deposit, Red Mountain, B.C. 141
8. Isotopic Characterization of Lead in Galena from Mineral Deposits in the Trail Map Sheet, South-central British Columbia ... 143
9. Fluid Inclusion Data .. 159

FIGURES

2-1. Geology map of the Nelson-Rossland map-area, southeastern British Columbia ... 4
2-2. Stratigraphic succession .. 5
2-3. Composite stratigraphic sections of the Elise Formation, Nelson-Rossland map area 5
3-1. Location and regional geology of the Katie property ... 14
3-2. Drill hole plan for the Katie property, showing location of main mineralized zones 16
3-3. Cross-sections through the Katie Main zone, Katie property .. 17
3-4. Regional geology map showing location of mineral deposits and occurrences in the region of the Silver King shear zone, southwest of Nelson ... 18
3-5. Geological map of the Gold Creek - Cottonwood Creek area south of Nelson ... 20
3-6. Geology of the Cat zone. .. 21
3-7. Geology of the Shaft area. .. 22
3-8. Geology in the vicinity of mineralized zones, Great Western Group .. 24
3-9. Geology in the vicinity of the Toughnut showing ... 26
3-10. Geology of the Stewart claim group, west of Ymir .. 30
3-11. Geology in the vicinity of the Second Relief vein-skarn deposit (from Ostensoe, 1989) .. 32
3-12. Geology of the Erie Lake area, showing the location of mineral deposits .. 41
3-13. Geology of the Clubine prospect .. 42
3-14. A stratigraphic section of the Hall Formation in the Keystone Mountain area ... 43
3-15. Geology of the Velvet mine area, southwest of Rossland .. 46
4-1. Geological map of the Rossland area ... 50
4-2. Geological map of the Rossland area ... 50
4-3. Trace element diagrams of analyses of intrusive clasts in the Archibald Formation, Fruitvale and Montrose areas .. 52
4-4. A composite section of the Elise Formation, Rossland area .. 53
4-5. Plot of U-Pb zircon data, sample R313-4, Rossland monzonite .. 56
4-6. Plot of U-Pb zircon data from the Rainy Day pluton ... 57
4-7. Plot of U-Pb zircon data, sample R96-5, quartz diorite breccia dike, Red Mountain 57
4-8. Simplified geological map of the Rossland copper-gold camp 60
4-9. Diamond drill location plan, and simplified geology map of the Evening Star and Georgia claim area ... 67

4-10. Vertical section through the Evening Star deposit ... 68
4-11. Diagram illustrating alteration assemblages along the margins of Evening Star veins 69
4-12. A vertical model showing the distribution, tenor and alteration assemblages of veins in the Rossland Au-Cu camp ... 72
4-13. Geology of the Rossland South belt vein system .. 78
4-14. Simplified maps of the Rossland camp, showing metal zonation patterns 84
4-15. Log fO₂ - pH diagram for the system Fe-S-O showing phase relationships at 350°C and 3 kb. 86
4-16. Model showing the evolution of gold-copper vein, polymetallic vein and molybdenite skarn deposits of the Rossland camp .. 88

A8-1. Location of mineral occurrences analyzed in the Trail map sheet 144
A8-2. General ²⁰⁶Pb/²⁰⁴Pb versus ²⁰⁷Pb/²⁰⁴Pb and ²⁰⁸Pb/²⁰⁴Pb versus ²⁰⁸Pb/²⁰⁴Pb plots of galena lead isotopes from mineral occurrences in the Trail map sheet .. 144
A8-3. General ²⁰⁶Pb/²⁰⁶Pb versus ²⁰⁷Pb/²⁰⁶Pb plot of galena lead isotopes from mineral occurrences in the Trail map sheet ... 150
A8-4. Cluster 1 data for mineral occurrences in the Trail map sheet are plotted with Jurassic to Cretaceous points for lead for an idealized Mantle, Lower Crust and Orogenic ... 150
A8-5. Cluster 2 and Cluster 3 data for mineral occurrences in the Trail map sheet plotted with Jurassic to Cretaceous points for the plumbotectonic model for Mantle and Lower Crust 150
A8-6. Main geologic and physiographic features in the Nelson southwest portion showing location of intrusions and fluid inclusion ... 160
A8-7. Sketches of six compositional types of fluid inclusions identified in quartz from mineral occurrences in the Rossland Group ... 171
A8-8. Histograms of temperature data, Type I fluid inclusions ... 173

A9-4. Histograms of temperature data, Type III fluid inclusions ... 174
A9-5. Histograms of temperature data, Type IV fluid inclusions ... 175
A9-6. Freezing point depression of water for NaCl, KCl, CaCl₂, and MgCl₂ solutions 176
A9-7. Comparison of range of salinity and homogenization temperature of Rossland Group deposits to fluids in different ore deposit environments ... 184

PHOTOS
3-1a. Brecciated sulphides in Lower Cambrian Reeves limestone, Reeves MacDonald deposit 12
3-1b. Folded sulphides in Reeves limestone, Reeves MacDonald deposit 12
3-2. Remains of the Motherlode mill in the Sheep Creek valley ... 35
3-3. View of hillside above Ymir ... 37
3-4. View of the Main Silver King vein .. 38
3-5. View of the waste dumps at the Velvet deposit ... 43
3-6. Ultramafic blocks mineralized with specularite and chalcopyrite, velvet mine dump 47
4-1. Porphyritic Rossland sill .. 54
4-2. Coarse-grained Rossland monzonite .. 55
4-3. Altered quartz diorite dike from the A pit on Red Mountain .. 57
4-4a. View of the northern slope of Red Mountain showing open pits developed by Red Mountain Mines Ltd .. 61
4-4b. View of Red Mountain mill site on the north side of Red Mountain; note ski runs on slopes of the mountain ... 61
4-5. Red Mountain breccia, E pit, Mountain View claim diopside-rich metasediment clasts in a diopside, hornblende and minor molybdenite matrix ... 62
4-6. Altered and veined breccia, Red Mountain ... 62
4-7a. Dark, biotite hornfelsed metasediments cut by numerous stringers of diopside and molybdenite .. 63
4-7b. Molybdenite with chlorite, calcite and epidote cut diopside-garnet skarn, B pit, Coxey deposit, Red Mountain .. 63
4-8. View of the headwall of E pit, Mountain View molybdenite deposit, Red Mountain 63
4-9. Waste dump on Le Roi claim, Red Mountain, viewed to northwest 66
4-10. Underground photo of vein and alteration, Evening Star deposit 69
4-11. Vein and alteration, Evening Star deposit ... 69
4-12. View, along strike to east, of the Centre Star and Nickel Plate Au-Cu vein system 74
4-13. War Eagle Au-Cu vein here removed and infilled ... 75
4-14. Semi-massive sulphide vein, Homestake Ag-Zn-Pb deposit, South belt 79
4-15a. Bluebird Ag-Pb-Zn vein, South belt. Brecciated sulphide vein with angular quartz fragments in a matrix of pyrite-sphalerite-galena .. 80
4-15b. Bluebird Ag-Pb-Zn vein, South belt, South belt. Brecciated vein with angular, silicified and hornfelsed siltstone fragments cut by veins of mainly quartz and pyrite 80
A5-1. Sample R96-12c, Mountain View deposit, E pit .. 122
A5-2. Sample R96-19b, Mountain View deposit, F pit .. 123
A5-3. Sample R96-25b, Le Roi deposit .. 124
A5-4. Sample R96-35c, Centre Star deposit .. 126
A5-5. Sample R96-68, California deposit: Fringing alteration of secondary amphibolea round large crystals of clinopyroxene in massive skarn. 133
A5-6. Sample R96-68, California deposit: Typical “bird’s-eye” alteration of pyrrhotite to intermediate FeS phases and marcasite in clinopyroxene skarn .. 135
A9-1. Primary inclusions trapped in quartz growth zones in quartz matrix of massive pyrite, galena sphalerite vein, Bluebird deposit 166
A9-2. Semi-massive pyrrhotite chalcopyrite vein incorporating subhedral quartz comprising primary fluid inclusions in growth zones and overgrowths, Le Roi deposit 166
A9-3. Possible primary fluid inclusions in bands or clusters in poikilitic-textured quartz gangue from a massive sulphide vein, Jumbo deposit. .. 166
A9-4. Possible primary fluid inclusions trapped in growth zones in quartz from a quartz-pyrite-calcite vein, Evening Star deposit 166
A9-5. Secondary fluid inclusions occurring along healed fracture planes in quartz vein with disseminated galena, Clubine deposit. 168
A9-6. Wispy quartz texture: abundance of microfractures filled with tiny, secondary fluid inclusions in quartz vein with disseminated galena, chalcopyrite, pyrite, and sphalerite, Ace in the Hole deposit .. 168
A9-7. Composite plate with examples of type I, type IIIA, type IV, type V, type VI and type VII fluid inclusions at 20°C .. 172
A9-8. “Milled” quartz grains in a semi-massive to poorly banded pyrrhotite chalcopyrite vein at the Columbia-Kootenay deposit and a quartz vein with minor pyrite and pyrrhotite at the Consolidated St. Elmo deposit .. 189
A9-9. Secondary multiphase Type VI fluid inclusions in anhedral quartz vein, War Eagle deposit. .. 190
A9-10. Clear, euhedral quartz crystal encapsulated within pyrrhotite grain, War Eagle deposit .. 191

TABLES

3-1. Analyses of Selected Hand Samples and 1-Metre Surface Chip Samples from the Cat and Shaft Showings 22
3-2. Analyses of Selected Samples, Great Western Group .. 25
3-3. Analyses of Selected Hand Samples, Toughnut Prospect 26
3-4. Mineralized Drill Intersections, Alma N and Star 28
3-5. Mineralized ‘zones’ In The Inez Vein, With Average Gold Content 33
3-6a. Analyses of Hand Samples from the Inez and Rand Veins, Second Relief 34
3-6b. Analyses of Hand Samples from the Rand Vein, Second Relief 34
3-7. Analyses of Selected Samples from Trenches and Drill Core, Silver King Deposit 39
3-8. Analyses of Selected Samples of the Clubine Property 44
3-9. Analyses of Samples of Coryell Intrusive Rocks, Velvet Deposit Area and Elsewhere 47
3-10. Analyses of Samples of the Velvet Vein .. 48
4-1. Analyses of Intrusive Clasts within the Archibald Formation in the Fruitvale and Monroset Areas 52
4-2. Fe₂O₃ (Total), Feo and Fe₂O₃ Values of Selected Hand Samples of the Rossland Monzonite Showing Oxidation State Ratios 55
4-3. Drill Intersections, Novelty Property .. 64
A8-1. Galena Lead Isotope Analyses of Mineral Occurrences in the Trail Map Sheet 145
A8-2. Location of Mineral Occurrences Analyzed in the Trail Map Sheet 151
A8-3. Geology of Mineral Occurrences Analyzed in the Trail Map Sheet 152
A9-1. List of Quartz Vein Samples, Occurrence Names, and Estimated Age of Related Intrusions Used in this Study Sorted by Deposit Type 161
A9-2. Fluid Inclusion Nomenclature used in this Study .. 163
A9-3a. Melting, Homogenization and Decrepitation Temperature Data for Type I Fluid Inclusions 164
A9-3b. Melting, Homogenization, Dissolution and Decrepitation Temperature Data for Type III Fluid Inclusions .. 166
A9-3c. Melting, Homogenization and Decrepitation Temperature Data for Type IV Fluid Inclusions .. 167
A9-3d. Melting and Homogenization Temperature Data for Type V Fluid Inclusions ... 168
A9-3e. Melting, Homogenization and Decrepitation Temperature Data for Type VI Fluid Inclusions .. 169
A9-3f. Melting, Homogenization and Decrepitation Temperature Data for Type VII Fluid Inclusions ... 170
A9-4. Salinity in Relation to Deposit Type ... 170
A9-5. Paired Salinity and Homogenization Temperature Data ... 177
A9-6. Fluid Inclusion Composition Data: Type IV Fluid Inclusions ... 179
A9-8. Fluid Characteristics of Deposits Associated with the Early Jurassic Eagle Creek Complex and Katie Stock, the Early-Middle Jurassic Silver King Pluton, the Middle Jurassic Rossland Group, Bonnington Pluton and Nelson Batholith and the Middle Cretaceous Hidden and Wallack Creek Stocks .. 185