RELATIONSHIP BETWEEN OPHIOLITES AND GOLD-QUARTZ VEINS IN THE NORTH AMERICAN CORDILLERA

By C.H. Ash, P.Geo.

With Contributions by:
R.W.J. Macdonald, Teck Corporation, Vancouver, British Columbia
P.R. Reynolds, Department of Geological Sciences, Dalhousie University, Halifax, Nova Scotia
Relationship between ophiolites and gold-quartz veins in the North American Cordillera

(Bulletin 108)

ISBN 0-7726-4376-8

QE390.2.G65A83 2000 553.4’1’09711 C00-960319-0
FRONTISPIECE

Left photo: Crystalline lode gold, Eureka mine, Tuolumne County, Mother Lode Belt, measures 15 x 33 cm and weighs 2.1 kilograms (67 troy ounces). This sample currently resides in the Smithsonian Institute (Photo courtesy of Bruce Ballantyne).

Right photo: Placer gold nugget from the Atlin camp (Photo courtesy of Bruce Ballantyne).
Johnston (1940) wrote the following preceding a discussion on the origin of gold veins at Grass Valley, California and is worthy of consideration by deposit model proponents:

“The principal characteristics of the rock formations, fracture systems, vein materials, and wall rock alteration have been set forth. From this body of fact must come a large part of the evidence upon which any explanation of the origin of the deposits is based. But, as much of that evidence is fragmentary and incomplete, it must be supplemented by evidence from other geologically similar districts and interpreted in the light of our broader geological concepts. Thus genetic hypotheses, in a large measure, are a synthesis of knowledge and belief, and it is imperative that they be so regarded”
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>SUMMAR Y</td>
<td>v</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Previous Work</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Regional Geological Setting</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Scope of Problem and Approach</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>NORTHERN CACHE CREEK TERRANE</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>ATLIN CAMP</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Previous Work</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Regional Geological Setting</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Local Geology</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Atlin Ophiolitic Assemblage</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Atlin Accretionary Complex</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Intrusive Rocks</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Gold Mineralization in the Atlin Camp</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Tectonic Setting</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Alteration and Mineralization</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Age of Mineralization</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Source of Placer Gold</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>CENTRAL CACHE CREEK TERRANE</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>SNOWBIRD DEPOSIT</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Previous Work</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Regional Setting</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Local Geology</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Accretionary Complex Rocks</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Ophiolitic Assemblage Rocks</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Intrusive Rocks</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Snowbird Deposit</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Vein Mineralization</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>39</td>
</tr>
<tr>
<td>4</td>
<td>BRIDGE RIVER TERRANE</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>BRALORNE-PIONEER CAMP</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Previous Work</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Regional Geological Setting</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Deposit Geology</td>
<td>44</td>
</tr>
<tr>
<td>5</td>
<td>SOUTHERN SLIDE MOUNTAIN TERRANE</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>ROSSLAND GOLD CAMP</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Previous Work</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Geological Setting</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Ultramafic Rocks</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Record Ridge Ultramafic Body</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>O.K. Ultramafic Body</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Origin of the Ultramafic Rocks</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Lode Gold Mineralization</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Massive Pyrrhotite-Chalcopyrite Fissure Veins</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Gold-Quartz Veins</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Age and Origin of Gold Mineralization</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>61</td>
</tr>
<tr>
<td>6</td>
<td>CENTRAL SLIDE MOUNTAIN TERRANE</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>BARKERVILLE GOLD CAMP</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Previous Work</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Geological Setting</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Lode Gold Deposits</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Gold-Quartz Veins</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Auriferous Pyritic Lenses</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Age of Mineralization and Relationship to Tectonism</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Associated Felsic Intrusions</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Source of Placer Gold</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>71</td>
</tr>
<tr>
<td>7</td>
<td>NORTHERN SLIDE MOUNTAIN TERRANE</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>CASSIAR GOLD CAMP</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Previous Work</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Regional Setting</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Post-Collisional Magmatism</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Deposit Geology</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Age of Gold Mineralization</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Relationship to Magmatism</td>
<td>78</td>
</tr>
</tbody>
</table>
CHAPTER 8
OTHER SIGNIFICANT GOLD-QUARTZ VEIN DEPOSITS, NORTH AMERICAN CORDILLERA

Introduction .. 81
California Gold-Quartz Veins 81
Previous Work 81
Regional Geological Setting 81
Grass Valley 85
Mineralization 88
Mother Lode Gold Belt 89
Mineralization 89
Alleghany District 91
Geological Setting 91
Age of Mineralization 91
Relationship to Magmatism 93
Summary .. 93
Alaska-Juneau Deposit 95
Previous Work 95
Geological Setting 95
Mine Geology 95
Mineralization 97
Age of Mineralization and Relationship to Tectonism 97
Summary .. 97

CHAPTER 9
SUMMARY AND CONCLUSIONS

Introduction .. 99
Host Lithology 99
Ophiolite-Hosted Gold Veins 99
Mixed Mafic Igneous-Sedimentary Sequences .. 101
Lithotectonic Setting and Relationship to Placer Gold Deposits .. 102
Paleo-Tectonic Environment of Formation 106
Late Orogenic Gold-Quartz Vein Deposits 106
Apparent Anorogenic Gold-Quartz Veins 106
Interpretation 106
Discussion .. 107
Suggestions for Future Study 109
Conclusions .. 110

REFERENCES 111

APPENDIX I 127
Terminology .. 127
Ophiolite ... 127
History ... 127
Ophiolite Suite 128
Listwanite .. 129

APPENDIX II 133
Ar-Ar Dating Methods 133

APPENDIX III 135
Detailed Deposit Features 135
Vein Evolution 135
Sulphide Minerals 137
Distribution of Gold Ore 137
Exploration Criteria 138

APPENDIX IV 139

TABLES
2.1. Gold Composition and Sulphide Mineralogy of Selected Quartz Veins in the Atlin Gold Camp 22
2.2. K-Ar Mineralization Ages for Selected Gold Showings in the Atlin Camp 24
3.1. U-Pb analytical Data - McKnab Lake Pluton .. 35
4.1. Traditional Bralorne Terminology Related to Components of a Typical Ophiolite Suite 44

FIGURES
1.1. Distribution of oceanic terranes in the North American Cordillera, showing significant mesothermal gold-quartz vein camps and locations of study areas discussed in this report 2
1.2. Plate tectonic cartoon illustrating possible mechanism of oceanic-continental crustal interaction for the Cordilleran margin during the Late Paleozoic and Early Mesozoic 5
1.3. Historic yearly averages for the price of gold compared to evolution of changing ideas for both gold quartz vein deposits and their host rocks 7
2.1. Location of the Atlin map area 10
2.2. Geological setting of the northern Cache Creek Terrane 11
2.3. Relative age and tectonostratigraphic relationships for lithologies in the Atlin area 12
2.4a. Geology and distribution of lode gold showings in the Atlin camp 13
2.4b. Schematic geological cross-section of the Atlin area 13
2.5. Cross-section illustrating the flat-lying character of the Monarch Mountain thrust at the Pictou property .. 18
2.6. Geology of the Beavis prospect 18
2.7. ⁴⁰Ar-³⁹Ar apparent age spectra of mariposite from four lode gold showings in the Atlin camp 23
3.1. Regional geology of the central Cache Creek Terrane 28
3.2. Geological setting of the Snowbird gold-stibnite deposit. 31
3.3a. Classification of the McKnab Lake plutonic rocks based on relative abundances of quartz, potassium feldspar and plagioclase as calculated on the basis of major element chemistry 34
3.3b. Characteristic mineral diagram depicting the aluminous character of the McKnab Lake plutonic rocks 34
3.4. Uranium-lead concordia plot for the McKnab Lake pluton 34
3.5. Local geology of the Snowbird gold-stibnite deposit. 35
3.6. Apparent age spectra plot of muscovite from the Snowbird stock. 36
3.7. Detailed geology and drill-hole locations for the Snowbird main showing with cross-sections of the Main and Pegleg veins as defined by drill-hole data 37
3.8. Apparent age spectra plots for mariposite/fuchsite separated from listwanite samples discussed in text 39
3.9. Relative age and tectonostratigraphic relationships for lithologies in the Central Cache Creek Terrane 39
4.1. Location and regional geological setting of the Bralorne Pioneer mine 42
4.2. Geological setting of the Bralorne-Pioneer deposit 43
4.3. Relative age and tectonostratigraphic relationships for lithologies in the Bralorne region 45
4.4. Geology of the Bralorne-Pioneer mine area 46
4.5. Ar-Ar age spectra of mariposite in quartz veined and carbonate altered diabase from the Pioneer dump . . 48
5.1. Regional setting of the Rossland mining camp 52
5.2. Geological map of the Rossland gold camp 53
5.3. Relative age and tectonostratigraphic relationships for lithologies in the Rossland camp 54
5.4. Geology of the Record Ridge ultramafic body 55
5.5. Classification and nomenclature of ultramafic rocks in the olivine-orthopyroxene-clino.pyroxene prism 56
5.6. Geology of the O.K. ultramafic body 58
5.7. Normalized platinum group element abundances of massive chromitite from the Record Ridge ultramafic body compared to the field of PGEs in ophiolitic chromite 59
6.1. Regional geological setting of the Cariboo placer gold camp 64
6.2. Distribution of placer gold deposits in the Cariboo camp (after Struik, 1988) 65
6.3. Simplified geology of the Wells area, from Alldrick as modified after Struik 66
6.4. Detailed tectonic relationship between Antler ophiolitic assemblage and Barkerville Terrane rocks along the northern margin of the Cariboo placer camp 68
6.5. Vertical section along 5 000N of mines in the Cariboo camp showing major faults and possible trend of ore zones 69
6.6. Relative age and tectono-stratigraphic relationships for lithologies in the Cariboo-Barkerville camp 70
7.1. Geology of the Cassiar gold camp 74
7.2. Location and regional geological setting of the Cassiar camp 75
7.3. Relative age and tectonostratigraphic relationships for lithologies in the Cassiar camp 76
7.4. Schematic cross-section of the Erickson mine 77
7.5. Ar-Ar age spectra plot for sericite in quartz vein from the Quartz rock Creek area 78
8.1. Significant gold-quartz vein producing mines of California compared to other significant North America Cordilleran gold producers 82
8.2. Geology and distribution of significant gold-quartz vein camps in the Western Sierra Nevada metamorphic belt, California 83
8.3. Relative age and tectonostratigraphic relationships for lithologies in the Western Sierra Nevada metamorphic belt 84
8.4. Geology of the Grass Valley - Colfax area depicting regional setting of the Grass Valley district 86
8.5. Geology of the Grass Valley district 87
8.6. Geology of the Mother Lode belt between Jackson and Plymouth 90
8.7. Geology of the Alleghany District 92
8.8. Regional geological setting of the Juneau Gold Belt, southeastern Alaska 94
8.9. Relative age and tectonostratigraphic relationships for lithologies at the Alaska Juneau deposit 95
8.10. Geological setting of the Alaska-Juneau and Treadwell deposits 96
9.1. Schematic representation of host lithologies and tectonic setting of gold quartz vein deposits in the North American Cordillera 100
9.2. Geological setting of the northern part of Klondike District 103
9.3. Distribution and age of hydrothermal micas from gold quartz vein mineralization throughout the Cordillera 104
9.4. Summary of age relationships for host lithologies, mineralization, magmatism and tectonism for selected North American Cordillera gold-quartz vein deposits 105
A.1. Idealized oceanic crustal section illustrating the rock types and their relative position of formation within an idealized oceanic spreading centre 129

A.2. Schematic representation of alteration products for different ophiolitic host rocks marginal to gold sulphide bearing quartz veins 138

PHOTOS

2.1. View looking north over Atlin Lake 11
2.2. Dunite pod in banded harzburgite near the summit of Monarch Mountain 14
2.4. Serpentinite-bastite mylonite developed in harzburgite near the base of the Monarch Mountain Allochthon 15
2.3. Folded pyroxenite dike in harzburgite tectonite near the summit of Monarch Mountain 15
2.5. Shoreline outcrop of brecciated and pervasively carbonatized harzburgite, shore of Atlin Lake south of Atlin 15
2.6. Surface exposure of the Pictou property. Note: packsack in centre of photo for scale 17
2.7. Character of trenches mapped at the Beavis Property 19
2.8. Character of argillite-chert broken formation in the Beavis trenches 19
2.9. Detailed relationship between feldspar-porphyritic granodiorite dike and quartz vein in Beavis trench 19
2.10. Exploration adit blasted into quartz veined and carbonatized harzburgite at the Aitken showing 20
2.11. Anna showing near the summit of Monarch Mountain 20
2.10b. Style of quartz veining in pervasively carbonatized harzburgite at the Aitken showing 20
2.10a. Exploration adit blasted into quartz veined and carbonatized harzburgite at the Aitken showing 20
2.11. Anna showing near the summit of Monarch Mountain 20
2.12. Monolithic serpentinite breccia within the Pine Creek fault zone exposed on the shore of Atlin Lake, north of the Atlin town site 20
2.13a,b. Tectonic melange within the McKee Creek fault zone, headwaters McKee Creek 24
3.1. Limestone block in sheared fine grained siliciclastic and pelagic sediments exposed along the northwest end of Battleship Island in the south eastern end of Stuart Lake 29
3.2. Accretionary complex siliciclastic sedimentary rocks exposed on island in the center of Stuart Lake displaying irregular planar fabric 29
3.3. Resistant limestone block in fissile siliceous argillite exposed on ridge west of the main Snowbird showing 32
3.4. Varitextured gabbro on ridge southeast of Mount Nielsp 32
3.5. Cumulate olivine and intercumulate pyroxene displaying poikilitic texture in ultramafic cumulates rocks on Mount Nielsp 32
3.6. Flat-lying serpentinite scaly fabric developed in untrumafic cumulate rocks on ridge southeast of Mount Nielsp 32
3.7. Medium-grained, equigranular tonalite characteristic of the McKnab Lake pluton 33
3.8. Pervasively carbonate-sericite-pyrite altered quartz diorite-tonalite of the Snowbird stock 36
3.9a. Snowbird showing - view of the Main vein shaft looking north 38
3.10. Looking south at sheeted quartz veins in hanging wall basalt in gouge zone along contact with footwall sediments at the Pegleg vein 39
4.1. Main portal to the Bralorne mine in 1991 41
4.2. Remains of the Pioneer mine along Cadwallader Creek in 1991 47
4.3b. Detail of altered varieties of diabase from the Pioneer Mine 47
4.3a. Waste dumps from Pioneer Mine along the west side of Cadwallader Creek 47
5.1. Chrome bearing dunite, on the eastern slope of Record Ridge 56
5.2. Olivine wehrlite, displaying textural character of intercumulate pyroxene and cumulate olivine 56
5.3. Cumulate chromite layering in dunite 56
5.4. View looking towards the northwest over the Little Sheep Creek Valley depicting the setting of the IXL, Midnight 57
5.5. Entrance No. 8 level portal to the IXL mine 57
5.6a and b. Carbonatized ultramafic tectonic breccia with disseminated pyrite near the entrance to No. 8 level portal at the I.X.L. mine 59
6.1. The town of Wells and Island Mountain in 1982 viewed from the east illustrating the approximate position of the thrust faulted contact of the Island Mountain amphibolite above the mine workings 67
7.1. View to the south overlooking Needle Point Mountain 75
7.2. Flat-lying thrust contact between hanging wall graphitic black argillite and footwall carbonate altered ultramafics in the area of the Sky vein 76
7.3. Example of relatively unaltered massive basaltic
diabase/volcanic in faulted contact with orange-brown
weathering carbonate altered equivalent 76
7.4. Massive bull quartz of the Jenni vein 77
7.5. Native gold in quartz from the Eileen vein, Erickson
mine .. 77