GEOLOGY OF THE FORREST KERR- MESS CREEK AREA, Northwestern British Columbia (NTS 104B/10, 15 & 104G/2 & 7W)

By James M. Logan, P.Geo, John R. Drobe and William C. McClelland

With Contributions from:
W.E. Bamber, Geological Survey of Canada
M.J. Orchard, Geological Survey of Canada
B.L. Mamet, University of Montreal
F. Cordey, University Claude Bernard Lyon 1
GEOLOGY OF THE
FORREST KERR-MESS CREEK AREA,
NORTHWESTERN BRITISH COLUMBIA
(NTS 104B/10, 15 & 104G/2 & 7W)

By James M. Logan1, P.Geo, John R. Drobe2 and
William C. McClelland3

1Geological Survey, B.C. Ministry of Energy and Mines
2Cardero Resources Corp.
3Geology and Geological Engineering, University of Idaho

With Contributions by:

W.E. Bamber, Macrofossil Identifications, Geological Survey of Canada
M.J. Orchard, Conodont Identifications, Geological Survey of Canada
B.L. Mamet, Microfauna and Microflora Identifications University of Montreal
F. Cordey, Radiolarian Identifications, Université Claude Bernard Lyon I
Canadian Cataloguing in Publication Data
Logan, James Metcalfe, 1954-
Geology of the Forrest Kerr-Mess Creek area, northwestern British Columbia (NTS 104B/10, 15 & 104G/2 & 7W)

(Bulletin ; 104)

Issued by Geological Survey Branch.
Includes bibliographical references: p.
ISBN 0-7726-4038-6

VICTORIA
BRITISH COLUMBIA
CANADA
October 2000
Frontispiece: View west up the Andrei Glacier.
SUMMARY

The Forrest Kerr-Mess Creek map area straddles the boundary between the Intermontane and the Coast belts in northwestern British Columbia. This region is underlain by rocks comprising the western boundary of the Stikine Terrane (Stikinia). At this latitude Stikinia consists of well stratified, middle Paleozoic to Mesozoic sedimentary rocks and volcanic and comagmatic plutonic rocks of island-arc affinity which include: the Early Devonian to Permian Paleozoic Stikine assemblage, the Late Triassic Stuhini Group and the Early Jurassic Hazelton Group. These are overlapped by Middle Jurassic to early Tertiary successor-basin sediments of the Bowser Lake and Sustut Groups, Late Cretaceous to Tertiary continental volcanic rocks of the Sloko Group, and Late Tertiary to Recent bimodal shield volcanism of the Edziza and Spectrum ranges. Warm-spring, tufa deposits forming in the Mess Creek valley attest to areas of dynamic geological evolution in modern day.

Polyphase deformation affects rocks that are older than Late Cretaceous, and crustal scale faults affect rocks in the area as young as Tertiary. Early and middle Devonian rocks within the map area have been subjected to up to four phases of folding and deformation. Mid-Carboniferous to Early Permian rocks record as few as two phases of deformation, whereas the Late Triassic and Jurassic strata record no more than two phases of deformation in addition to a regionally important post-Norian unconformity. Mid-Devonian, northeast-verging D₁ structures correspond to a northern Cordilleran-wide event correlative with the Antler Orogeny of the southwest U.S. and Ellesmerian Orogeny in the arctic. Pre-Norian, Permo-Triassic (Tahltanian Orogeny) D₂ deformation was accompanied by upper greenschist facies metamorphism. Early Jurassic, D₃ (circa 185 Ma) deformation broadly warped and folded the rocks into upright, open structures. Late Jurassic to Tertiary contraction (D₄), produced northeast-verging structures related to development of the Skeena Fold and Thrust Belt. The youngest structures record east-west extension and northerly translation, thought to post date the Eocene.

The Late Paleozoic and Mesozoic volcanic and plutonic rocks within the map area are characterized by metal deposits related to island-arc volcanic centres. Mineral production is not recorded within the map area although large copper, gold and molybdenum mineral resources are defined for porphyry deposits at Schaft Creek (971 495 000 tonnes grading 0.298 %Cu, 0.033 %MoS₂, 0.14 g/t Au and 1.20 g/t Ag; Spilsbury, 1995) and Galore Creek (Central zone: 233 900 000 tonnes grading 0.67 %Cu, 0.35 g/t Au and 7.0 g/t Ag; Enns et al., 1995). Mineral occurrences and prospects in the Forrest Kerr - Mess Lake area can be grouped into four main categories: calcalkaline Cu-Mo-Au and alkaline Cu-Au porphyries; Cu and Cu-Au skarns; subvolcanic Cu-Ag-Au (As-Sb) fault and shear-hosted veins and carbonate hosted replacement; and, stratiform volcanogenic massive sulphide and carbonate hosted (?Irish-type) Zn-Pb-Ag deposits. Mineral occurrences, within the map area, display (except stratiform types) a direct correlation with north and northeast striking faults and Late Triassic to Early Jurassic intrusive rocks.
TABLE OF CONTENTS

SUMMARY .. 1

CHAPTER 1
INTRODUCTION AND REGIONAL GEOLOGY 1
Location and Access .. 1
History of Exploration 3
Previous Geological Work 3
Acknowledgments .. 3
Regional Geology .. 4
 Tectonic Setting ... 4
 Regional Stratigraphy 5
 Regional Plutonism 7
Unconformities and Orogenic Events 8

CHAPTER 2
STRATIGRAPHY .. 11
Stikine Assemblage 11
 Division I .. 13
 Lower and Middle Devonian 13
 Division II .. 16
 Devonian to Mississippian 16
 Chemistry of the Lower Devonian and Early
 Mississippian Volcanic Rocks 19
 Paleoenvironmental Interpretations 21
Division III
 Mid Carboniferous 22
 Paleoenvironmental Interpretations 25
 Division IV ... 25
 Upper Carboniferous 25
 Mess Lake Area .. 25
 More Creek Area 27
 Forrest Kerr Area 27
 Chemistry of the Volcanic Rocks 30
 Paleoenvironmental Interpretations 30
 Division V .. 30
Early Permian ... 30
 West of the Forrest Kerr and More Creek
 Plutons .. 30
 East of the Forrest Kerr Pluton 31
 Paleoenvironmental Interpretations 32
Early to Middle Triassic 32
 Late Triassic Stuhini Group 32
 Mess Lake/Arctic Lake Area 33
 More Creek Area 35
 Forrest Kerr Area 37
 Newmont Lake Graben Volcanic Facies 38
 Chemistry of Upper Triassic Volcanic Rocks ... 40
 Paleoenvironmental Interpretations 41
 Lower Jurassic .. 42
 Lower to Middle Jurassic Hazelton Group 44
 Salmon River Formation 46
 Chemistry of the Salmon River Formation Basalt...... 49
 Lower(?) and Middle Jurassic 50
 Middle to Upper Jurassic Bowser Lake Group 50
 Ashman Formation 50
 Paleoenvironmental Interpretations 51
 Upper Cretaceous to Tertiary Sustut Group 51
 Paleoenvironmental Interpretations 52
 Pliocene .. 52
 Nido and Spectrum Formations 52
 Quaternary .. 52
 Arctic Lake Formation 52
 Big Raven Formation 53
 Chemistry of the Quaternary Arctic Lake
 Formation .. 53
 Hot Spring Deposits 53

CHAPTER 3
INTRUSIVE ROCKS ... 57
Introduction .. 57
Early(?) Devonian .. 57
 Late Devonian to Early Mississippian Forrest Kerr
 and More Creek Plutonic Suites 58
 Forrest Kerr Pluton 59
 More Creek Pluton 59
 Geochronology .. 62
 Initial Strontium 63
 Middle (?) to Late Triassic Stikine Plutonic Suite. 64
 Hickman Pluton 64
 Other Stikine Suite Intrusions 64
 Late Triassic to Early Jurassic Copper Mountain
 Plutonic Suite .. 65
 Loon Lake Stock 66
 Newmont Lake Plugs 66
 Syenite Porphyry 66
 Early Jurassic Texas Creek Plutonic Suite 66
 McLymont Creek Pluton 67
 Other Texas Creek Plutonic Suite Intrusions 67
 Early Jurassic and Younger Intrusions 68
 Middle Jurassic Three Sisters Plutonic Suite 68
 Yehiniko Pluton 68
 Middle Jurassic Diorite and Gabbro Intrusions ... 68
APPENDICES
1. Macrofossil locations, identifications and ages 135
2. Conodont locations, identifications, ages and colour alteration indices ... 137
3. Barren conodont collection locations 140
4. Fusulinid locations and identification and ages 141
5. Microfauna and microflora locations, identification and ages ... 142
6. Microfauna and microflora of the Carboniferous carbonate north of Forrest Kerr glacier 143
7. Radiolarian locations, identifications and ages 144
8. Whole rock and trace element chemistry of volcanic rocks ... 145
9. Whole-rock and trace element chemistry of plutonic rocks ... 148
10. Lithogeoehmical analyses of altered and mineralized rocks .. 152
11. Potassium-argon analytical data and dates from More Creek and Forrest Kerr map areas 155
12. U-Pb zircon date for a sample from Schaft Creek ... 156
13. U-Pb age data for samples of the Stikine Assemblage and Stuhini Group .. 159
14. Rubidium and strontium analytical data 163

TABLES
1-1. Table of Formations .. 6
2-1. U-Pb and K-Ar isotopic dates for stratified rocks 12
2-2. Silica and select trace element contents of Late Paleozoic volcanic rocks .. 19
3-1. U-Pb and K-Ar isotopic dates for igneous rocks 63
3-2. Silica and select trace element contents of Late Paleozoic intrusive rocks. .. 66
4.1. Compilation and comparison of structural features for the Forrest Kerr-Mess Creek area 80
4-2. Structural features in the Forrest Kerr-Mess Creek area .. 91
5-1. Mineral occurrences in the Forrest Kerr, More Creek and Mess Creek map areas 95
5-2. Selected geochemical analyses and assays from the Biskut, Voigtberg property 103
5-3. Subvolcanic vein types characterized by dominant sulphide assemblages 107
5-4. Selected geochemical analyses and assays of boulders from the north and south zones, Foremore property .. 117

MAP
Geology Map of the Forrest Kerr-Mess Creek Area (104B 10, 15 & 104G 2 & 7W) 1:100 000 scale, including schematic cross-sections

FIGURES
1-1. Location map showing compilation sources and previous work and the physiography of the map area 2
1-2. Terrane map showing tectonostratigraphic setting of the study area .. 4
1-3. Location of study area relative to the major tectonostratigraphic features of the northwestern Cordillera and regional distribution of Paleozoic, Triassic, Jurassic and Cretaceous-Tertiary rocks of Stikinia 5
1-4. Location of map area relative to the six main plutonic suites in the Stikine-Iskut rivers area 7
1-5. Schematic Paleozoic stratigraphic column, Forrest Kerr-Mess Lake area .. 8
1-6. Schematic Mesozoic to Cenozoic stratigraphic column, Forrest Kerr-Mess Lake area 8
2-1. Evolution and current geological understanding of the Stikine assemblage stratigraphy, Stikine-Iskut area .. 11
2-2. Distribution of Devonian to Lower Carboniferous strata of the Stikine assemblage 13
2-3. Schematic stratigraphic columns for the Lower to Middle Devonian Paleozoic Stikine assemblage 14
2-4. Schematic stratigraphic columns for Devonian to Mississippian strata of the Stikine assemblage 17
2-5. Major and trace element geochemical plots for Lime Lake basalts, More Creek mafic and felsic volcanic rocks .. 20
2-6. Multi-element geochemical patterns for Devonian and Devonian-Mississippian volcanic rocks of the Stikine assemblage .. 21
2-7. Distribution of Mid-Carboniferous to Lower Permian strata of the Stikine assemblage 22
2-8. Generalized stratigraphic columns for mid-Carboniferous strata of the Stikine assemblage 23
2-9. Generalized stratigraphic columns for Upper Carboniferous strata of the Stikine assemblage 26
2-10. Measured section of Upper Carboniferous epiclastics and tuffaceous strata exposed northwest of Newmont Lake ... 28
2-11. Distribution of Triassic strata, shows the locations of the three main subdivisions; Mess Lake volcanic facies, More Creek sedimentary facies and Newmont Lake Graben volcanic facies .. 32
2-12. Schematic stratigraphic columns for Upper Triassic Stuhini Group, showing fossil and geochronological constraints and facies equivalent correlations for the
PHOTOS
2-1. Interlayered white-weathering quartz-sericite schists and massive green subvolcanic diorite sills exposed west of the headwaters of Mess Creek .. 14

2-2. Polydeformed Early to Middle Devonian carbonate and mafic to intermediate volcaniclastic rocks intruded by subvolcanic feeder dikes, east of Bear valley .. 15

2-3. Carbonate, black carbonaceous phyllite and an augen of rusty weathering felsic tuff comprise the third package of Lower to middle Devonian rocks north of Lime Lake .. 16

2-4. Devonian to Early Mississippian submarine volcanic rocks. ... 18

2-5. East-trending, steep south dipping Mid-Carboniferous carbonate exposed north of Andrei Glacier ... 23

2-6. Mid-Carboniferous echinoderm packstone, 1.5 km north of Andrei Glacier .. 24

2-7. Interbedded echinoderm fragment-rich carbonate and siltstone near the base of the Mid-Carboniferous section west of Newmont Lake .. 24

2-8. Pale weathering Upper Carboniferous (Moscovian) flow-layered spherulitic rhyolite. .. 26

2-9. Fining-upward, normal graded series of epiclastic volcanic debris flows, cut by a high angle syn-diagenetic fault ... 28

2-10. Poorly-sorted, thick bedded polylithic volcanic, plutonic and sedimentary clast conglomerate. Carbonate clasts contain mid-Carboniferous fossils and conodonts. .. 29

2-11. Large block of probable Carboniferous carbonate in a melange of mafic volcaniclastic sediments and coarse volcanic conglomerates, located near the top of “pyramid” peak ... 29

2-12. Early Permian coralline limestone ... 31

2-13. Early Permian limestone interlayered with yellow amorphous silica beds, east of Newmont Lake 31

2-14. Thin-section of Upper Triassic serpentinized mafic tuff (?) or peperitic sill ... 33

2-15. Epitode altered breccia fragments of subvolcanic and mafic volcanic rocks .. 34

2-16. Moderately-dipping pillowed basaltic andesite units overy massive flows and subvolcanic sills northeast of the Schaft Creek deposit ... 34

2-17. Planar-laminated, normal graded grey siltstones and green volcanic-derived sandstone of Upper Triassic Stuhini Group ... 36

2-18. Khaki to olive coloured volcanic debris flow, consisting of angular siltstone, chert, limestone and rare volcanic clasts in a feldspathic matrix .. 36

2-19. Pyroxene-rich crystal and lapilli tuffs, north east of Hankin peak ... 37

2-20. Well-bedded Upper Triassic section of sediments exposed southwest of Arctic Lake, in Mess Creek Valley ... 37

2-21. Purple, plagioclase hornblende porphyritic andesite block breccia of Newmont Lake graben facies 40

2-22. Cuspatc stacked concave algal structures of silicified limestone characteristic of the Upper Triassic limestone unit in the Newmont Lake .. 40

2-23. Angular block of andesite with bomb sag in planar bedded intermediate to felsic crystal ash tuff 41

2-24. Moderately east-dipping, well-bedded, maroon volcanic clast dominated, quartz-grain and granite-bearing Early Jurassic conglomerate, located west of Arctic Lake, viewed northwards ... 44

2-25. Disconformable basal contact of Lower Jurassic interbedded siltstone and cross-stratified sandstone located north of Hankin Peak .. 44

2-26. Jurassic stratigraphic section, 8 km southeast of the confluence of South More and More creeks, viewed northeastward .. 45

2-27. Thick accumulation of Middle Jurassic pillowed and flow breccia basals exposed northeast of the confluence of Iskut River and Forrest Kerr Creek .. 47

2-28. Outcrop exposure of well preserved pillow-forms indicating bedding tops are upright, viewed northward .. 49

2-29. Thin-section showing prehnite as radiating and “bow-tie” structures, quartz and chlorite mineral assemblage characteristic of the low grade metamorphic alteration of this intraflow siltstone .. 49

2-30. Black and red scoria blocks and lapilli-sized Quaternary basalt comprise the eastern flank of Nahta Cone, viewed northeastward ... 53

2-31. Low-hill, terraced tufa deposits east of Mess Creek, near the south end of Mess Lake .. 55

3-1. Angular to subrounded inclusions of mafic diorite and amphibolite in light coloured medium grained tonalite to trondhjemite of the marginal phase of the Forrest Kerr pluton, located north of Lime Lake .. 59

3-2. Medium to coarse grained hornblende diorite cut by pegmatitic apophyses of felsic biotite tonalite 60

3-3. Hornblende plagioclase pegmatite segregation in gneissic layered gabbroic phase of the More Creek pluton ... 60

3-4. Coarse intergrowths of hornblende and plagioclase in a layered hornblende gabbro forming part of the ultra-mafic pendant .. 60

3-5. Photomicrograph of two rocks from the Early Mississippian ultramafic pendant ... 61

3-6. Lenticular, flattened mafic inclusion-rich gneissic tonalite of probable magmatic origin occur locally
3-7. Rare isoclinal folds and weak foliation developed in hornblende quartz diorite of the More Creek pluton. .. 61

3-8. Weakly aligned, trachytic porphyry syenite sill, comprised of zoned potassium feldspar megacrysts in a massive grey colored chloritic feldspar groundmass .. 67

3-9. Gneissic-textured hornblende diorite of the More Creek pluton, crosscut by medium grained tonalitic dikes and younger aphanitic to plagioclase porphyritic mafic dikes. 69

3-10. Fine-grained green, diorite dike swarm from eastern flank of the Forrest Kerr pluton .. 70

4-1. Recumbent F1 or F2 folds in Early Devonian carbonate showing good axial planar cleavage which transposes bedding .. 78

4-2. Intrafolial isoclinal F1 folds in green and purple schistose chlorite tuffs of Early to Middle Devonian age. .. 78

4-3. Tightly appressed and transposed intrafolial isoclinal folds and quartz veins .. 78

4-4. West-trending, upright F3 kinks and crenulation cleavage developed in quartz sericite and chlorite schists in the headwaters of Mess Creek .. 79

4-5. Intrusive contact relationships at the northeast margin of the McLymont Creek Pluton .. 81

4-6. West-trending, upright F3 chevron folds developed in Early to Middle Devonian interlayered calcareous phyllite and chlorite sericite schists northeast of the Foremore property. .. 83

4-7. Well developed axial planar cleavage developed in Upper Triassic thin bedded siltstones and shales. .. 83

4-8. Upright, open north-trending syncline in Upper Triassic augite and feldspar-rich volcaniclastic sandstones .. 84

4-9. Gentle, upright north trending D4 folds on east limb of the Downpour syncline .. 84

4-10. Deformed, intrusive contact between Late Devonian Forrest Kerr pluton (diorite phase) and Early to Middle Devonian carbonates. .. 87

4-11. Looking north, from the confluence of Forrest Kerr Creek and the Iskut River along the trace of the Forrest Kerr Fault .. 88

5-1. The Schaft Creek Cu-Mo-Au porphyry deposit consists of three zones, the Liard or Main zone, the West Breccia zone and the Paramount zone .. 101

5-2. Epidote, diopside and magnetite skarn envelopes mafic dike crosscutting marble pendant in the Early Mississippian More Creek pluton at the Dundee showing .. 105

5-3. Characteristic ferrocarbonate altered northeast-trending, shear zone .. 107

5-4. Dark ferricrete gossan and surrounding light colored argillic alteration at the main Gossan Zone on the GOZ/RDN .. 108

5-5. Quartz stockwork crosscuts chloritic hornblende metadiorite and enclosing phyllite and tuff at the Forrest zone .. 116

5-6. Diamond drilling on Cominco Ltd. - Foremore claims, 1990 .. 117
CHAPTER 1

INTRODUCTION AND REGIONAL GEOLOGY

LOCATION AND ACCESS

The Forrest Kerr Creek, More Creek and Mess Creek map areas comprise a 3,000 km² area, which is located east of the Coast Mountains, between Iskut River and Mess Lake, approximately 100 kilometres southeast of Telegraph Creek in northwestern British Columbia (Figure 1-1). The large tonnage Schaft Creek calcalkaline porphyry copper-gold-molybdenum deposit is located within the area mapped. The three map sheets, 104B/15 and part of 104B/10, 104G/2 and 104G/7W, lie between latitudes 56°40 and 57°30 north, and longitudes 130°30 and 131°00 west. Results of regional mapping and sampling carried out between 1989 and 1992 are summarized here. This report and accompanying map incorporates new data and revisions to the 1:50000 geology and mineral occurrence maps, Open File 1990-2, Open File 1992-1 and Open File 1993-6. The focus of the project was to produce detailed geological maps and a database to better understand the geological setting of the mineral deposits in the area between Forrest Kerr and Mess Creek areas and aid in making new discoveries.

The area mapped is located along the western margin of the Intermontane Belt, adjacent to the high-relief mountains of the Coast Belt. Topography is rugged, typical of mountainous and glaciated terrain with numerous snowfields and elevating glaciers. Elevations range from 100 metres on the Iskut River flood plain to over 2662 metres atop Hankin Peak in the More Creek area. Permanent icefields and alpine glaciers cover approximately one-third of the Forrest Kerr map area, less of the More Creek area, and only small isolated areas in the Mess Creek area. The map area covers two physiographic regions, the high, rugged Boundary Ranges, on the southwest and the more subdued Tahltan Highlands which cover the area east of Mess Creek and north of More Creek (Holland, 1976). West of the map area, the Coast Mountains are covered by large icefields, remnants of the Quaternary ice sheet, which feed glaciers descending north and eastward into the headwaters of the Forrest Kerr Creek (frontispiece). The Andrei Glacier is one of the larger, approximately 2 kilometres wide and terminates at an elevation of less than 600 metres. North in the More Creek area the More glacier carries both medial and lateral moraines which merge to cover the ice completely. Natavas and Alexander glaciers are somewhat smaller than Andrei Glacier; Matthew Glacier is a large ice sheet which covers the high peaks south and east of Hankin Peak.

The Iskut north project area is wholly contained within the drainage basin of the Stikine River. The south and eastern areas drain southward into the Iskut River; the west and northern areas drain northward into Schaft and Mess creeks. Both are tributaries of the Stikine River, the Iskut River is it’s largest and forms the south boundary to the map area. The Iskut River occupies a broad, one to two kilometre wide steep-sided valley for the most part, which flows east crossing the structural grain of the Coast Belt and joins the Stikine approximately 50 kilometres upstream from its mouth. Near the confluence of Forrest Kerr Creek the Stikine is confined to a narrow canyon for approximately 20 kilometres, where it has eroded through 10 metres of Recent basalt flows in the last 3600 to 3800 years (B.C. Hydro, 1985, in Hauksdottir et al., 1994). Physiography of the Stikine valley varies from mature, broad steep-walled to youthful canyons over its length from its source on the Stikine Plateau to where it discharges into Frederick Strait near Wrangell, Alaska. Northeast of Telegraph Creek the steep-walled “Grand Canyon” is a post-Tertiary drainage feature. Pre-Quaternary, the river may have flowed southwesterly from the head of this canyon, rejoining the present lower Stikine valley near the mouth of Mess Creek, or have been diverted into the Iskut valley (Kerr, 1948a, Mathews, 1991). In the Flood Glacier area the river occupies a broad, mature valley 3 to 4 kilometres wide. During high water, material carried into the Stikine from tributary streams exceeds the river budget and the river aggrades its channel. The result is a sinuous braided river of constantly shifting bars and channels (Souther, 1972). The Sphaler Creek area drains northward through the valleys of Galore Creek and the South Scud River into the west-flowing Scud River, a tributary of the Stikine River and westward down Sphaler Creek into the Porcupine River which joins the Stikine 9 kilometres west of Mount Scotsimpson. The north-trending drainages occupy fault-controlled valleys. Similar structures control the Mess and Iskut valleys farther east.

Historically the Stikine River and its tributaries provided access through the Coast Mountains into the interior of the province. One of the main routes to the Klondike and Atlin Lake discoveries of 1896 and 1898 was up the Stikine to Telegraph Creek, then overland to Teslin or Atlin Lake (Kerr, 1948a). Paddle-wheel riverboats navigated between tidewater at Wrangell, Alaska as far upstream as the Stikine Canyon at Telegraph Creek until the late 1960s. Fixed-wing aircraft fly charters from Smithers, Dease Lake and Telegraph Creek to the Bronson airstrip located 25 kilometres west at the Snip Mine. A gravel airstrip is located at Schaft Creek and a third, though shorter gravel strip is located at the headwaters of Forrest Kerr Creek. Access to the remaining areas is by helicopter. During summer field seasons in the past, helicopters have been stationed at Galore Creek, Scud strip, Forrest Kerr strip and Bronson strip. A helicopter base is located 80 kilometres to the southwest at Bob Quinn Lake and 150 kilometres north at Dease Lake. With the development of the Eskay Creek deposit into one of the highest grade gold and silver producing mines in the country, an all weather gravel road was constructed in 1994 linking the
Figure 1-1. Location map showing compilation sources and previous work and the physiography of the map area.
mine to the highway and providing access to the southeastern corner of the study area.

Wrangell, Alaska located on tidewater 90 kilometres to the southwest, provides commercial air connections to Anchorage, Alaska or Seattle, Washington. Between 1991 and mid-1996 Cominco Ltd. operated a hovercraft between Wrangell and the Bronson air strip on the Iskut River, 30 kilometres south of the map area.

HISTORY OF EXPLORATION

The first recorded mineral assessment of the area was conducted by a group of Russian geologists who explored along the Stikine River in 1863 (Alaska Geographic Society, 1979). Placer gold was mined from bars on the Stikine River a short distance south of Telegraph Creek and later production is recorded from the Barrington River, during the late 1800s and early 1900s. Exploration for lode deposits began in the 1900s along access corridors provided by the Stikine River and its tributaries. Hudson Bay Mining and Smelting Company Limited initiated prospecting in the more remote parts of the Galore Creek map area in 1955, using helicopter-supported field parties. Discovery of the Galore Creek porphyry copper deposit in 1955 was a direct result of this program and focused porphyry exploration activity on the area. The Schaft Creek (Liard Copper) deposits were staked in 1957. The recent resurgence of mineral exploration in the map area has been in response to its geological similarities with the Sulphurets, Iskut and Golden Bear gold camps. Mining and exploration companies active in the map area during the fieldwork included Pamicon Development Limited (Forrest claims), Cominco Ltd. (Foremore), Noranda Exploration Company Limited (GOZ/RDN and Lucifer), Gulf International Minerals Limited (McLymont-NW), Kestrel Resources (Tic-Arc-Mon) and Keewatin Engineering Ltd. (Little Les - Arctic claims).

PREVIOUS GEOLOGICAL WORK

Forrest Kerr carried out the first geological mapping along the Stikine and Iskut rivers from 1924 to 1929, but it was not until 1948 that his data were published (Kerr, 1948a, b). Kerr proposed the original Permian and pre-Permian subdivision of Paleozoic strata, and from his work in the Taku River valley of the Tulsequah map area, he defined the Late Triassic Stuhini Group, much of which underlies the current study area. In 1956, a helicopter-supported reconnaissance of the Telegraph Creek map area was conducted by the Geological Survey of Canada (1957, Operation Stikine). Other work by the Geological Survey of Canada (Figure 1-1) includes that of Souther (1971, 1972, 1988, 1992), Monger (1970, 1977a) and Anderson (1984, 1989). Jack Souther masterminded Operation Stikine and produced 1:250 000-scale geological maps of the Telegraph Creek sheet (104G), Tulsequah sheet (104K) and 1:50 000-scale detailed studies of Mount Edziza (1988, 1992), James Monger (1977a) further subdivided the late Paleozoic rocks and informally named them the Stikine assemblage. Robert Anderson’s work includes studies to the north on the Hotailah (1983) and Stikine batholiths (1984) and, more recently, a 1:250 000-scale geological map of the Iskut River area (Anderson, 1989). Peter Read has conducted regional mapping for the Geological Survey of Canada in the Stikine Canyon area (Read, 1983) and feasibility studies for B.C. Hydro in the Forrest Kerr Creek area (Read et al., 1989).

Regional metallogeny studies and mapping by D.J. Alldrick, J.M. Britton and others of the British Columbia Geological Survey Branch have covered the Sulphurets, Unuk River and Snippaker areas to the south (Alldrick and Britton, 1988; Alldrick et al., 1989, 1990). To the west, A. Panteleyev carried out mapping in the immediate area of Galore Creek, in conjunction with a study of the deposit between 1973 and 1975 (Panteleyev, 1973, 1974, 1975, 1976, 1983). Geological mapping was completed at 1:50 000 scale in the Galore Creek area (Sphaler Creek and Flood Glacier map sheets) in 1988 (Logan et al., 1989; Logan and Koyanagi, 1995). Concurrent British Columbia Geological Survey projects have completed 1:50 000 scale map coverage north and west of the Iskut-north project area in the Scud River, Yehiniko Lake, Chutin River and Tahltan Lake map areas (Brown et al., 1996).

Further descriptions of the geology and mineral prospects within the area can be found in various Annual Reports of the British Columbia Minister of Mines dating from the early 1900s and assessment reports on file with the Ministry of Energy, Mines and Petroleum Resources.

ACKNOWLEDGMENTS

We wish to acknowledge contributions from many people regarding various aspects of this study. Victor Koyanagi contributed a field season mapping in the Forrest Kerr area (1989) and two weeks reconnaissance mapping and sampling in 1990. He provided sound data and insights to the geology of the area and his contributions are gratefully acknowledged. Discussions with Dave Lefebure, Mitch Mihalyynuk, Andre Panteleyev, Gerry Ray and Derek Brown of the British Columbia Geological Survey and Bob Anderson of the Geological Survey of Canada were important at the inception stage and ongoing phases of the study and are much appreciated. Capable and enthusiastic assistance throughout the 1989 field season was provided by Gabriel Viegweger, and by Darren Elsby and James Gough during the 1991 field season. The cooperation, logistical support and free discussion of geological ideas by various mineral exploration companies made this study possible from its earliest stage. These people and companies include: Ian Paterson and Mike Westcott of Cominco Ltd.; Wayne Spilsbury and Andy Betmanis of Teck Exploration Ltd.; Steve Todoruk and Mike Stammers of Pamicon Development Limited; Mike Savell and Rob Berg of Noranda Exploration Company Limited; Henry Awmack and David Caulfield of Equity Engineering Ltd.; and David Blann of Coast Mountain Geological Ltd.

Logistical and technical support was provided by Alan Gilmour in Victoria and Jaycox Expediting, Tundra Expediter and Smithers Expediting over the course of the project. Rick Lavak of Northern Mountain Helicopters flew us faithfully rain or shine. Special thanks goes out to Norma Jean and Daryl Adzich of Vancouver Island Helicopters.
Ltd. Their hospitality and expediting expertise and the safe and courteous flying of Daryl and Bob Paul from the base at Bob Quinn Lake was greatly appreciated. We also thank all the staff from Central Mountain Air whom supplied and moved us into and out of the field area.

We are indebted to W.E. Bamber, E.T. Tozer, B.L. Mamet, T.P. Poulton, A.E.H. Pedder and B.S. Norford, who provided important and timely fossil identifications, L. Rui and Silvia Pinard for fusulinacean identifications, F. Cordey for radiolarian identifications and M.J. Orchard of the Geological Survey of Canada for conodont identifications and colour alteration indices. J.E. Harakal, D. Runkle, J. Gabites and Anne Pickering of The University of British Columbia and Peter Reynolds of Dalhousie University carried out some of the early isotope and radiometric dating.

W.J. McMillan reviewed an earlier version of this manuscript and suggested improvements. V. Vilkos of the Geological Survey Branch drafted many of the figures and facilitated production of the Geoscience Map.

REGIONAL GEOLOGY

TECTONIC SETTING

The study area (Figure 1-2) straddles the boundary between the Intermontane Belt and the Coast Belt and is underlain mainly by rocks of the Stikine Terrane (Stikinia), the westernmost terrane of the Intermontane Superterrane. Stikinia is the largest of the allochthonous terranes. Like other terranes of the North American Cordillera, its pre-Jurassic geological history, paleontological and paleomagnetic signatures are unique. They have been interpreted to indicate that it originated far removed from the margin of ancestral North America (Gabrielse et al., 1991) and was amalgamated with the Cache Creek, Quesnel and Slide Mountain terranes prior to accretion to the North American craton (Figure 1-2). Recent studies suggest that the Stikine terrane developed adjacent to the ancestral margin of North America (McClelland, 1992; Mihalynuk et al., 1994).

Stikinia’s outboard (western) position relative to the Cache Creek Terrane in British Columbia is an enigma (Monger, 1977b). Wernicke and Klepacki (1988) proposed that Stikinia and Quesnellia are segments of a single arc generated by Mesozoic subduction of the Cache Creek Terrane, which through subsequent collision with Wrangellia and complex dextral movement, produced the present configuration. The result is a doubling up of the arc terranes, with Stikinia separated from Quesnellia, by the Cache Creek Terrane. Geological studies in southeastern Alaska (Gehrels et al., 1990; Rubin and Saleeby, 1991) and northwestern British Columbia (Gareau, 1991; McClelland 1992) correlate metamorphic rocks west of and within the Coast Belt with rocks of the Yukon-Tanana Terrane. As well, McClelland and Mattinson (1991) and McClelland (1992) suggest that parts of the Paleozoic Stikine assemblage are correlative with and depositionally tied to Paleozoic rocks of the Yukon-Tanana Terrane. Depositional ties between the Quesnel and Yukon-Tanana terranes are also known and this together with the hook-like geometry of the 0.706 initial 87Sr/86Sr line around the northern end of Stikinia (Figure 1-2) led Nelson and Mihalynuk (1993) to propose a single arc model consisting of the Quesnel, Yukon Tanana, Nisling and Stikine terranes. Neodymium isotope studies (Samson et al., 1989) suggest the Stikine Terrane in the Iskut River area comprises juvenile (Phanerozoic) crustal material that evolved in an intra-oceanic environment with no continental detrital influences. Diverse isotopic signatures may reflect construction of a late Paleozoic arc that was transitional across continental slope deposits to distal intra-oceanic settings, a modern analog being the Aleutian arc of western Alaska.

Mihalynuk et al. (1994) envisage the Late Triassic arc to have subsequently been deformed into an orocline that encloses the Cache Creek Terrane. The orocline closed by
Middle Jurassic time, after which emplacement of Quesnellia onto North America began (Gabrielse and Yorath, 1991; Murphy et al., 1995). These models use geological, faunal, isotopic and paleomagnetic data that are not always consistent but are compatible with each model.

The major tectonic elements of the northern Intermontane Belt include the Bowser Basin and the northeast-trending Stikine Arch. The Forrest Kerr - Mess Creek area is within the Stikine Arch. The Bowser Basin is confined between the Stikine and Skeena arches, rests on Stikinia and consists of marine and non marine elastic rocks. It is a Middle Jurassic to Middle Cretaceous successor basin, initiated during amalgamation of the Intermontane Superterrane (Ricketts et al., 1992). Overlying all the older rocks, the Cretaceous to Tertiary Sustut Group records fluviial and alluvial fan deposition derived initially from the east (Omineca Belt) and later from the west (Stikinia and the Coast Belt). The Coast Plutonic Complex intrudes the western boundary of the Stikine Terrane. It is a long and narrow magmatic belt that extends the length of the Canadian Cordillera and is, comprised predominantly of calcalkaline granitoid rocks of Jurassic to Paleogene age. Cooling ages and uplift history are complex across the belt. Plutonic rocks of the Coast Belt are mid-Cretaceous and older on the west side of the belt and mainly Late Cretaceous and Tertiary on the east. In the study area, which is on the east (Figure 1-3), voluminous postorogenic Tertiary bodies obscure the western margin of Stikinia. Eocene Sloko Group continental volcanic rocks erupted from centres located north and northwest of the study area.

At this latitude Stikinia consists of well stratified middle Paleozoic to Mesozoic sedimentary rocks and volcanic and comagmatic plutonic rocks of probable island arc affinity which include: the Paleozoic Stikine assemblage, the Late Triassic Stuhini Group and the Early Jurassic Hazelton Group. These are overlapped by Middle Jurassic to early Tertiary successor-basin sediments of the Bowser Lake and Sustut Groups, Late Cretaceous to Tertiary continental volcanic rocks of the Sloko Group, and Late Tertiary to Recent bimodal shield volcanism of the Edziza and Spectrum ranges.

REGIONAL STRATIGRAPHY

Rocks of the Stikine assemblage are the structurally and stratigraphically lowest supraclastial rocks observed in the Forrest Kerr - Mess Creek area. Stikine assemblage rocks were informally named by Monger (1977b) to include all upper Paleozoic rocks (within Stikinia) which cropped out around the periphery of the Bowser Basin. The assemblage consists of Permian, Upper Carboniferous, Lower Carboniferous and Devonian age (using the geological time scale of, Harland et al., 1990) rocks. The dominant lithologies are tholeiitic to calcalkaline, mafic and bimodal flows and volcanioclastics, interbedded carbonate, minor shale and chert (Table 1-1). The Permian carbonates and volcanics are a distinctive part of the Stikine assemblage, traceable for over 500 kilometres from north of the Stikine River to south of Terrace. Correlative Permian strata east of the Bowser Basin are assigned to the Asitka Group, a name applied to all Paleozoic strata in Stikinia (Wheeler and McFeely 1991).

Unconformably overlying the Stikine assemblage are Lower to Middle Triassic sedimentary and Upper Triassic volcanic rocks. Similar Upper Triassic volcanic rocks are exposed the length of the Canadian Cordillera. Across the northern end of the Intermontane Belt there is little difference in age, lithology or chemistry of the Triassic strata from one tectonostratigraphic terrane to the next (i.e., between Takla and Stuhini). Unconformities separate the Upper Triassic Stuhini Group, which is mainly submarine volcanic rocks, from the Jurassic Hazelton Group which is mainly subaerial volcanic and sedimentary rocks in the map area. Rocks of the Hazelton Group encircle the northern Bowser Basin inboard (basinward) of the Upper Triassic Stuhini volcanic arc (Figure 1-3). The Hazelton Group consists of a lower sequence of intermediate flows and volcanioclastics, a middle felsic volcanic interval and an upper unit of sedimentary and submarine bimodal volcanic rocks.

The pre-amalgamation Paleozoic and Mesozoic volcanic archipelagos, carbonate platforms and related clastic basins are overlapped by Middle Jurassic to Upper Cretaceous and Lower Tertiary successor basin sediments of the Bowser Lake and Sustut groups respectively, and
<table>
<thead>
<tr>
<th>ERA</th>
<th>PERIOD</th>
<th>GROUP OR FORMATION</th>
<th>MAP UNIT</th>
<th>LITHOLOGY</th>
<th>THICKNESS (metres)</th>
<th>INTRUSIVE SUITES</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUAT</td>
<td>RECENT</td>
<td>Qt</td>
<td>silicic tuff</td>
<td>10-20</td>
<td>basaltic dikes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Qob</td>
<td>olivine basalt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Qal</td>
<td>unconsolidated glacial till</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLEISTOCENE</td>
<td>BIG RAVEN FORMATION</td>
<td>Qb</td>
<td>olivine-plagioclase-augite basalt</td>
<td>10-20</td>
<td>basaltic dikes</td>
<td></td>
</tr>
<tr>
<td>TERT</td>
<td>SPECTRUM FORMATION</td>
<td>Tsr</td>
<td>leucocratic peralkaline rhyolite</td>
<td>?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NIDO FORMATION</td>
<td>Tnb</td>
<td>olivine-and olivine-plagioclase basalt</td>
<td>?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| LATE CRETACEOUS | SUSTUT GROUP | kSs | conglomerate, quartzose sandstone, arkose | ? | |
| | BOWSER LAKE GROUP | Jbp | greywacke, shale, minor cross bedded sandstone | 500 | |

MIDDLE JURASSIC TO CRETACEOUS	HAZELTON GROUP	Jw	brecciated and fractured dark green silicic siltstone	1000-2000	
		mJHsl	siltstone, sandstone, minor tuff		
		mJHb	pillow basalt		
		UHv	purple, maroon, and green andesite		
		UJhr	felsic welded ash-flow tuff, rhyolite flows		
		UJHn	tan sandstone, plagioclase-crystal tuffs, peperite		
		UHss	graphitic siltstone		

LOWER JURASSIC	STUHINI GROUP	uTs	unbedded volcanics	200-300	
		uTsv	plagioclase crystal tuff		
		uTv	pink flow-layered rhyolite		
	NEWMONT LAKE faces	uTs	hornblende-plagioclase phryic andesite		
		uTsva	thick plagioclase-pyroxene porphyry flows, interbedded tuff		
		uTsvpp	massive pale weathering crystal tuff, lapilli tuff		
		uTsv	massive basalt flows and tuff	800	
		uTsm	serpentinized basaltic tuff		
	MESS LAKE faces	uTs	pale green grey tuffs, minor basalt flows	1500	
		uTs	thick poorly bedded sandstone		
		uTs	grey sparsely crinoidal limestone		
		uTs	well bedded feldspathic sandstone		
		uTsd	thin laminated black siltstone		

UPPER TRIASSIC	STIKINE	uSc	phyllitic siltstone, graphitic argillite, tuffaceous phylite		
		uCSc	massive and foliated limestone, chert, siltstone		
		uCsr	maroon to grey, flow-layered and spherulitic rhyolite	500-1000	
		uCsm	maroon tuff and lapilli tuff, ash-flow tuff		
		uCsb	massive amygdaloidal basalt		
		uCsgc	volcanic conglomerate		
		uCss	siltstone, sandstone, tuffaceous wacke		
	MID CARBONIFEROUS	uSc	biotitic limestone	200	

PALEOZOIC	DEVONIAN TO EARLY MISSISSIPPIAN	DMSv	pillow basalt - andesite, hyaloclastite and breccia	>2000-3000	More Creek Pluton: Forrest Kerr Pluton: biotite granite (LDg/EMg), hornblende diorite (LDE/EMD), gabro, hornblende, clinopyroxene (LDum) pyroxene diorite (EDg)
		DMSvr	hyaloclastite flow breccia, tuff and subvolcanic intrusives		
		lMDSv	intermediate to felsic plagioclase-phyric tuffs		
		lMDSc	deformed thin-beded to massive limestone		
		lMDS	thin-beded siltstone, sandstone and argillite		
		lMDSa	green and purple schistose tuffs		
		lMDS	quartz sericite schist		
		lMDSg	graphitic schist		

EARLY PERMIAN	STIKINE	PSu	unbedded metavolcanic and metasedimentary rocks	?	
		IPSc	medium bedded to massive fossiliferous carbonate	<200	
		IPSa	deformed tuff		

CARBONIFEROUS	STIKINE	CSst	phylitic siltstone, graphitic argillite, tuffaceous phylite		
		uCSc	massive and foliated limestone, chert, siltstone		
		uCSR	maroon to grey, flow-layered and spherulitic rhyolite	500-1000	
		uCSR	maroon tuff and lapilli tuff, ash-flow tuff		
		uCSb	massive amygdaloidal basalt		
		uCSgc	volcanic conglomerate		
		uCSS	siltstone, sandstone, tuffaceous wacke		
	Mid CARBONIFEROUS	mCSc	biotitic limestone	200	

LOWER AND MIDDLE DEVONIAN	STIKINE	lMDSt	pillow basalt - andesite, hyaloclastite and breccia	>2000-3000	More Creek Pluton: Forrest Kerr Pluton: biotite granite (LDg/EMg), hornblende diorite (LDE/EMD), gabro, hornblende, clinopyroxene (LDum) pyroxene diorite (EDg)
		lMDSq	hyaloclastite flow breccia, tuff and subvolcanic intrusives		
		lMDS	intermediate to felsic plagioclase-phyric tuffs		
		lMDS	deformed thin-beded to massive limestone		
		lMDS	thin-beded siltstone, sandstone and argillite		
		lMDS	green and purple schistose tuffs		
		lMDS	quartz sericite schist		
		lMDS	graphitic schist		
north-trending Late Cretaceous to Tertiary continental volcanic rocks of the Sloko Group. (Figure 1-3).

Neogene to Recent volcanic rocks comprise the 700 km² bimodal Mount Edziza volcanic complex that is situated north and east of the study area (Souther, 1992) and the volcanic centre located at Hoodoo Mountain, which is located to the southwest on the Iskut River (Edwards and Russell, 1994). Related Pliocene basalt flows also mantle the Iskut River valley bottom near the junction with Forrest Kerr Creek (Read et al., 1989). The alkaline volcanic rocks are byproducts of continental rifting related to north-trending, deep-seated (lower crustal) structures which tapped mantle-derived magmas.

REGIONAL PLUTONISM

Workers in the area recognize at least seven discrete plutonic episodes: Late Devonian, Early Mississippian, Middle (?) to Late Triassic, Late Triassic to Early Jurassic, late Early Jurassic, Middle Jurassic and Eocene in the Stewart-Iskut-Stikine area of northwestern Stikinia (Figure 1-4). These distinctions are based on detailed work by Anderson (1989), Anderson and Bevier (1990), Brown and Gunning (1989a), Holbek (1988), McClelland et al. (1993) and others. In a gross sense these episodes young westward, suggesting the magmatic front migrated westward in time from the Forrest Kerr pluton to the Coast Belt. Missing from this part of northwestern Stikinia are the three episodes of plutonism that span 100 million years from late Jurassic (155 Ma) through Cretaceous (65 Ma). This report follows the informal terminology of Woodsworth et al. (1991) for the plutonic suites.

Late Devonian plutonism, unknown elsewhere in Stikinia, is represented by a composite body of tholeiitic hornblende diorite and younger calcalkaline granodiorite and tonalite to trondjhemite phases of the Forrest Kerr pluton in the Forrest Kerr area. The Early Mississippian More Creek pluton is a mineralologically similar, but younger body that intrudes Devonian rocks in the More Creek area (Figure 1-4). Both intrusions have primitive isotopic signatures and lack continental inheritance.

Middle (?) to Late Triassic plutonic rocks of the Polaris Ultramafic Suite and the Stikine suite intrude Stuhini Group volcanics and are considered to be comagmatic and coeval with them. The Polaris suite consists of numerous, small Alaskan-type ultramafic bodies; the Stikine suite, tholeiitic...
to calcalkaline granitoid plutons. The Hickman batholith, comprising the Nightout and Hickman I-type plutons and the Hickman Ultramafic Complex, contains both suites (Figure 1-4).

In northwestern British Columbia, the Late Triassic to Early Jurassic Copper Mountain Plutonic Suite consists of numerous small alkaline and associated ultramafic bodies that occupy a north-northwest-trending belt along the east side of the Coast Range. They lie within Stikinia, are hosted by Upper Triassic Stuhini Group volcanics and include the Bronson, Zippa Mountain and Galore Creek intrusions. These intrusives and their counterparts in Quesnellia host important alkaline porphyry copper-gold mineralization.

The Early Jurassic Texas Creek Plutonic Suite consists of calcalkaline, I-type bodies that are slightly younger than the Copper Mountain suite. These plutons crop out discontinuously between the Coast and Intermontane belts. Characteristically they are deformed, north-trending bodies that are metamorphosed to greenschist grade. They are cospatial and coeval with Hazelton Group volcanic rocks. Middle Jurassic plutons of the Three Sisters suite comprise calcalkaline, felsic intrusive phases of the Hotailuh batholith (Anderson, 1983) and Stikine batholith (Anderson, 1984) of the Stikine Arch. The Middle Jurassic Yehiniko pluton intrudes the centre of the Hickman batholith (Holbek, 1988) and two additional Middle Jurassic intrusions, the Warm Springs and Middle Mountain bodies (Bevier and Anderson, 1991) are exposed west of the map area (Figure 1-4).

Rocks of the Paleogene Hyder Plutonic Suite, which represent the last major magmatic episode of the northern Cordillera, form the core of the Coast Plutonic Complex. This mainly Eocene event is characterized by plutons that are relatively more siliceous, biotite rich and unaltered. They occupy a wide belt west of the Stikine River.

UNCONFORMITIES AND OROGENIC EVENTS

Three regionally important unconformities are exposed in the study area: a Late Devonian - Early Carboniferous disconformity and nonconformity, a Late Permian - Early Triassic disconformity, and a Late Triassic - Early Jurassic angular unconformity and nonconformity (Figure 1-5, 1-6). Each represents important hiatuses in the rock record and reflect episodes of contraction and/or extension and uplift which characterized the Paleozoic through Mesozoic evolution of Stikinia, prior to its amalgamation and accretion to ancestral North America. Unconformities that separate Mesozoic from Cretaceous rocks and Cretaceous from Tertiary record various episodes of tectonism and magmatism during the last 180 Ma that can be related to changes in the relative motions of North America, Pacific, Kula and Farallon Plates, in particular, the change from Mesozoic contraction to Eocene extension (Engelbreton, 1985). Cenozoic magmatism, extension and dextral strike-slip regimes re-

Figure 1-5. Schematic Paleozoic stratigraphic column, Forrest Kerr-Mess Lake area. Biostratigraphic and radiometric age constraints are discussed in the text.

Figure 1-6. Schematic Mesozoic to Cenozoic stratigraphic column, Forrest Kerr-Mess Lake area.
sulted in numerous local unconformities within Tertiary to Recent volcanic rocks.

The Late Paleozoic and early Mesozoic history of Stikinia is interpreted to have encompassed an island arc setting similar to the modern day southwest Pacific. The oldest recognized unconformity places Visean to Bashkirian (Lower to mid-Carboniferous) carbonate on Lower Devonian volcanic and Late Devonian plutonic rocks. Carbonate deposition directly on an intrusive substrata implies significant uplift and unroofing of the intruded Lower Devonian arc by Early Carboniferous time. The timing of uplift coincides with the Antler Orogeny in the southwestern U.S. and a similar aged, but less well understood, event in the Kootenay Arc of Southeastern B.C. (unnamed) and the Ellesmerian Orogeny in northwestern Canada (Figure 1-5).

The disconformity at the top of the Early Permian carbonate is exposed in at least two areas east of Mess Creek. It corresponds to the Sonoma Orogeny of the western U.S. cordillera described by Wyld (1991) and the Tahltanian Orogeny of Souther (1971). This tectonic event affected Stikinia, Quesnellia, and Slide Mountain Terrane (Gabrielse and Yorath, 1991) and seems to have been a global phenomenon (Gabrielse, 1991). The earliest Triassic rocks deposited on the Permian carbonate are thin bedded marine sediments, followed by mafic, picritic tuffs, which mark the onset of Upper Triassic Stuhini volcanism (Figure 1-6).

Lower Jurassic marine sediments lie with angular unconformity on Late Triassic volcanic arc rocks and Lower Jurassic fluvial conglomerate also nonconformably overlies subvolcanic diorite in the study area. Both contacts are well-exposed and provide clear evidence for tectonism at the Triassic - Jurassic boundary (Figure 1-6). The same unconformity sharply separates flat-lying, homoclinal Toarcian volcanic rocks from folded, steeply inclined Late Triassic tuffaceous sediments to the north in the Yeheniko Lake area (Brown and Greig, 1990; Brown et al., 1992). A regionally significant unconformity preempted sub-Sinemurian, Early to Middle Jurassic Hazelton volcanism and sedimentation in the Iskut River area (Henderson et al., 1992).

The Early Jurassic marked the transition from terrane-specific events in the northern Cordillera to the development of overlap assemblages in the Middle Jurassic. The main deformation of the Intermontane Belt occurred during collision of Stikinia, Quesnellia and the Cache Creek terrane and formation of the Omineca Belt during the Middle and Late Jurassic (Gabrielse, 1991). Development of the Bowser Lake overlap assemblage is attributed to initial collision of the Intermontane Superterranne with the craton in northern B.C. (Gabrielse and Yorath, 1991) and obduction and southwestward emplacement of the Cache Creek terrane onto Stikinia along the King Salmon Fault by Middle Jurassic, Aalenian time (Ricketts et al., 1992).

Marine sedimentation in the Bowser Basin foreland ended when the Insular Superterranne collided with the Intermontane Superterranne, possibly in mid-Cretaceous time (Monger et al., 1982) or as early as Late Jurassic time (McClelland et al., 1992; van der Heyden, 1992). Northeastward contraction of supracrustal rocks of the Bowser Basin (shortening has been estimated at 44 per cent) formed the Skeena fold belt in the Late Cretaceous (Evenchick, 1991a, b). The structural style of the Bowser Basin suggests a basal detachment surface(s) underlies the Mesozoic sedimentary sequence (Gabrielse, 1991) and roots to the west in the Coast Belt. Cretaceous terrigenoclastic sediments of the Sustut Group were deposited with angular unconformity on folded and uplifted Mesozoic and Paleozoic rocks. In the study area, Cretaceous sandstone overlies the Early Mississippian More Creek pluton.

Cretaceous to Early Cenozoic right lateral transform motions and regional extension (Gabrielse, 1985) resulted in volcanic activity that formed the older units of the Mount Edziza complex. These were erupted onto a peneplain of Mesozoic and Paleozoic rocks. Recent flows filled valleys after erupting through faults in the More Creek Pluton. Periods of volcanic quiescence are marked by paleosols and occur at levels in the volcanic stratigraphy (Souther, 1972, 1992).